Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.269
Filtrar
1.
Parasitol Res ; 123(4): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622257

RESUMO

Avian haemosporidians are vector-borne parasites, infecting a great variety of birds. The order Passeriformes has the highest average infection probability; nevertheless, some common species of Passeriformes have been rather poorly studied. We investigated haemosporidians in one such species, the Eurasian jay Garrulus glandarius (Corvidae), from a forest population in Hesse, Central Germany. All individuals were infected with at least one haemosporidian genus (overall prevalence: 100%). The most common infection pattern was a mixed Haemoproteus and Leucocytozoon infection, whereas no Plasmodium infection was detected. Results on lineage diversity indicate a rather pronounced host-specificity of Haemoproteus and Leucocytozoon lineages infecting birds of the family Corvidae.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Aves Canoras , Humanos , Animais , Prevalência , DNA de Protozoário , Filogenia , Haemosporida/genética , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
2.
Acta Vet Hung ; 72(1): 21-23, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38367048

RESUMO

There are no recommended drugs to treat cattle infected with the protozoan Tritrichomonas foetus (TF). Ivermectin, widely used in the treatment of intestinal parasites, was found effective against some protozoa growing in vitro. Here, its effectiveness against a TF line was investigated. Trophozoites were incubated in media with increasing concentrations of ivermectin and mortality was determined after 24 h. Ivermectin killed cells with a mean maximum effective concentration (EC50) of 2.47 µg mL-1. The effective concentration of ivermectin was rather high for a formulation suitable for systemic treatment. However, topical treatment of animals against TF could still be considered and tested.


Assuntos
Doenças dos Bovinos , Infecções Protozoárias em Animais , Tritrichomonas foetus , Animais , Bovinos , Infecções Protozoárias em Animais/tratamento farmacológico , Infecções Protozoárias em Animais/parasitologia , Ivermectina/farmacologia , Trofozoítos , Doenças dos Bovinos/parasitologia
3.
Acta Trop ; 253: 107154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373526

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan and highly diverse blood parasites of birds that have been neglected in avian medicine. However, recent discoveries based on molecular diagnostic markers show that these pathogens often cause marked damage to various internal organs due to exo-erythrocytic development, sometimes resulting in severe and even lethal avian haemoproteosis, including cerebral pathologies. Molecular markers are essential for haemoproteosis diagnostics, but the data is limited, particularly for parasites transmitted in tropical ecosystems. This study combined microscopic and molecular approaches to characterize Haemoproteus enucleator morphologically and molecularly. Blood samples were collected from the African pygmy kingfisher Ispidina picta in Cameroon, and the parasite was identified using morphological characters of gametocytes. The analysis of partial cytochrome b sequences (cytb) identified a new Haemoproteus lineage (hISPIC03), which was linked to the morphospecies H. enucleator. Illustrations of blood stages were provided and the phylogenetic analysis showed that the new lineage clustered with five other closely related lineages belonging to the same morphospecies (hALCLEU01, hALCLEU02, hALCLEU03, hISPIC01, and hALCQUA01), with a maximum genetic distance between these lineages of 1.5 % (7 bp difference) in the 478 bp cytb sequences. DNA haplotype network was developed and identified geographic and host distribution of all lineages belonging to H. enucleator group. These lineages were almost exclusively detected in African kingfishers from Gabon, Cameroon, South Africa, and Botswana. This study developed the molecular characterization of H. enucleator and provides opportunities for diagnostics of this pathogen at all stages of its life cycle, which remains undescribed in all its closely related lineages.


Assuntos
Doenças das Aves , Haemosporida , Infecções Protozoárias em Animais , Animais , Filogenia , Ecossistema , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Aves/parasitologia , Haemosporida/genética , Citocromos b/genética
4.
Parasite ; 31: 5, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334685

RESUMO

Avian haemosporidian parasites (order Haemosporida, phylum Apicomplexa) are blood and tissue parasites transmitted by blood-sucking dipteran insects. Three genera (Plasmodium, Haemoproteus and Leucocytozoon) have been most often found in birds, with over 270 species described and named in avian hosts based mainly on the morphological characters of blood stages. A broad diversity of Haemoproteus parasites remains to be identified and characterized morphologically and molecularly, especially those infecting birds of prey, an underrepresented bird group in haemosporidian parasite studies. The aim of this study was to investigate and identify Haemoproteus parasites from a large sample comprising accipitriform raptors of 16 species combining morphological and new molecular protocols targeting the cytb genes of this parasite group. This study provides morphological descriptions and molecular characterizations of two Haemoproteus species, H. multivacuolatus n. sp. and H. nisi Peirce and Marquiss, 1983. Haemoproteus parasites of this group were so far found in accipitriform raptors only and might be classified into a separate subgenus or even genus. Cytb sequences of these parasites diverge by more than 15% from those of all others known avian haemosporidian genera and form a unique phylogenetic clade. This study underlines the importance of developing new diagnostic tools to detect molecularly highly divergent parasites that might be undetectable by commonly used conventional tools.


Title: Nouveau clade phylogénétique de parasites de rapaces Accipitridae du genre Haemoproteus (Haemosporida, Haemoproteidae), avec description d'une nouvelle espèce d'Haemoproteus. Abstract: Les parasites hémosporidies aviaires (ordre Haemosporida, phylum Apicomplexa) sont des parasites sanguins et tissulaires transmis par des insectes diptères hématophages. Trois genres (Plasmodium, Haemoproteus et Leucocytozoon) ont été le plus souvent trouvés chez les oiseaux, avec plus de 270 espèces décrites et nommées chez les hôtes aviaires en fonction principalement des caractères morphologiques des stades sanguins. Une grande diversité des Haemoproteus reste à identifier et à caractériser morphologiquement et génétiquement, en particulier ceux qui infectent les oiseaux de proie, un groupe d'oiseaux sous-représenté dans les études sur les hémosporidies. Le but de cette étude était d'étudier et d'identifier les Haemoproteus à partir d'un large échantillon comprenant des rapaces accipitriformes de 16 espèces, en combinant des protocoles morphologiques et de nouveaux protocoles moléculaires ciblant les gènes cytb de ce groupe de parasites. Cette étude fournit des descriptions morphologiques et des caractérisations moléculaires de deux espèces d'Haemoproteus, H. multivacuolatus n. sp. et H. nisi Peirce and Marquiss, 1983. Les Haemoproteus de ce groupe n'ont jusqu'à présent été trouvés que chez les rapaces accipitriformes et pourraient être classés dans un sous-genre ou même un genre distinct. Les séquences cytb de ces parasites divergent de plus de 15 % de celles de tous les autres genres d'hémosporidies aviaires connus et forment un clade phylogénétique unique. Cette étude souligne l'importance de développer de nouveaux outils de diagnostic pour détecter des parasites moléculairement très divergents qui pourraient être indétectables par les outils conventionnels couramment utilisés.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Aves Predatórias , Animais , Haemosporida/genética , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
5.
J Wildl Dis ; 60(2): 413-420, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294761

RESUMO

The order Procellariiformes includes several species of seabirds that perform long-distance migrations crossing all the oceans. These movements may contribute to the dispersal and exchange of hemoparasites, such as haemosporidians. There is a lack of studies regarding the order Haemosporida in Procellariiformes, and, to date, only the genus Plasmodium has been reported. This survey investigated the occurrence of the three genera of haemosporidians, Plasmodium, Haemoproteus, and Leucocytozoon, in samples collected between 2013 and 2022 from 95 individuals of 14 species of Procellariiformes from southern Brazil, including live animals in rehabilitation centers, individuals caught as incidental bycatch, and carcasses found along the coast. A total of 171 samples of blood and fragments of liver and spleen were analyzed, with extracted DNA being subjected to a nested PCR followed by phylogeny analysis. All animals were negative for Plasmodium spp. and Leucocytozoon spp., but one Black-browed Albatross (Thalassarche melanophris) and one Manx Shearwater (Puffinus puffinus) specimen were positive for Haemoproteus spp. The sequences obtained from positive seabirds did not show 100% similarity with other known lineages available in the MalAvi database and thus were probably novel lineages. However, one sequence clustered together with Haemoproteus noctuae, a parasite from Strigiformes, while the other was grouped with Haemoproteus columbae, which is classically related to Columbiformes. These results suggest that both positive animals may have become infected when beached or in rehabilitation centers by a spillover of vectors from local birds. This highlights the importance of surveillance of the health of Procellariiformes regarding the possibility of dissemination of new pathogens in different bird populations.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Estrigiformes , Humanos , Animais , Brasil/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Haemosporida/genética , Plasmodium/genética , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
6.
J Wildl Dis ; 60(1): 105-115, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909407

RESUMO

In a 2-yr study on prevalence of Haemosporidia in an avian community in Ithaca, New York, USA, we tested the hypothesis that apparent seasonal variation in prevalence is influenced by the detection protocol. We confirmed a higher detection of Haemosporidia using a molecular diagnosis technique (PCR) than by microscopy; this further increased when the PCR test was triplicated. Microscopic examination and PCR techniques have different specificity and sensitivity and therefore different probabilities of detecting hemoparasites. Birds with chronic infections or sampled during winter often have very low parasitemia, and such infections may be missed by microscopy but detected by PCR. Haemosporidian prevalence was higher during the breeding season than during the nonbreeding season regardless of the method used. Detection of Leucocytozoon spp. infection from blood smears using microscopy was challenging.


Assuntos
Doenças das Aves , Haemosporida , Plasmodium , Infecções Protozoárias em Animais , Animais , Estações do Ano , Microscopia/veterinária , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Haemosporida/genética , Aves/parasitologia , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase/métodos , Prevalência , Plasmodium/genética , Filogenia
7.
Int J Parasitol ; 54(1): 1-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37598774

RESUMO

Avian haemosporidians of the genera Plasmodium, Haemoproteus, and Leucocytozoon are common blood parasites in wild birds all over the world. Despite their importance as pathogens potentially compromising host fitness and health, little is known about the exo-erythrocytic development of these parasites, particularly during co-infections which predominate in wildlife. This study aimed to address this issue using Haemoproteus parasites of Fringilla coelebs, a common bird species of the Western Palearctic and host to a variety of haemosporidian parasite lineages. Blood and tissue samples of 20 F. coelebs, positive for haemosporidians by blood film microscopy, were analysed by PCR and sequencing to determine cytochrome b lineages of the parasites. Tissue sections were examined for exo-erythrocytic stages by histology and in situ hybridization applying genus-, species-, and lineage-specific probes which target the 18S rRNA of the parasites. In addition, laser microdissection of tissue stages was performed to identify parasite lineages. Combined molecular results of PCR, laser microdissection, and in situ hybridization showed a high rate of co-infections, with Haemoproteus lineages dominating. Exo-erythrocytic meronts of five Haemoproteus spp. were described for the first known time, including Haemoproteus magnus hCCF6, Haemoproteus fringillae hCCF3, Haemoproteus majoris hCCF5, Haemoproteus sp. hROFI1, and Haemoproteus sp. hCCF2. Merogonic stages were observed in the vascular system, presenting a formerly unknown mode of exo-erythrocytic development in Haemoproteus parasites. Meronts and megalomeronts of these species were distinct regarding their morphology and organ distribution, indicating species-specific patterns of merogony and different host tissue tropism. New pathological aspects of haemoproteosis were reported. Furthermore, phylogenetic analysis of Haemoproteus spp. with regard to their exo-erythrocytic stages points towards separation of non-megalomeront-forming species from megalomeront-forming species, calling for further studies on exo-erythrocytic development of haemosporidian parasites to explore the phylogenetic character of this trait.


Assuntos
Doenças das Aves , Coinfecção , Haemosporida , Passeriformes , Infecções Protozoárias em Animais , Animais , Filogenia , Coinfecção/veterinária , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Animais Selvagens
8.
Parasitology ; 150(14): 1316-1329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38087861

RESUMO

The nectarivorous common sunbird asity (Neodrepanis coruscans) is phylogenetically closely related to the frugivorous velvet asity (Philepitta castanea), yet it shares similar habitat and foraging behaviour as the Malagasy sunbirds (Cinnyris spp.). As ecological factors have been shown to influence blood parasite prevalence, it should be tested whether parasite abundance, prevalence and diversity of N. coruscans are more similar to the sunbirds than to its relative. Therefore, blood samples (n = 156) and smears (n = 60) were tested for different blood parasites (Haemosporida, trypanosomes, filarioid nematodes) using molecular and microscopic methods. High prevalence of haemosporidian parasites was observed in all bird taxa, with rates ranging from 23% in N. coruscans to 84.6% in C. notatus. The Malagasy Cinnyris spp. exhibited a high occurrence of mixed haemosporidian infections (>76%) with various specialized lineages. Within the Philepittidae family, no Haemoproteus infection was detected and just a few cases of mixed infections. Nectariniidae species predominantly had specialized haemosporidian lineages, while Philepittidae had infections mainly caused by generalist lineages. These findings emphasize the diverse range of blood parasites in Nectariniidae, while additionally highlighting the high diversity of trypanosomes and filarioid nematodes in Philepittidae. Additionally, several newly discovered haemosporidian lineages, Trypanosoma isolates and filarioid nematode isolates were identified. Notably, Philepittidae exhibited a lower prevalence of avian haemosporidian parasites compared to Nectariniidae, possibly due to potential resistance mechanisms. Despite N. coruscans sharing similar habitat and behavioural ecology with both Cinnyris spp., it closely resembles its relative, P. castanea, in all aspects of haemosporidian parasitism.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Doenças Parasitárias , Passeriformes , Plasmodium , Infecções Protozoárias em Animais , Animais , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Passeriformes/parasitologia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
9.
Parasitol Res ; 123(1): 68, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38135737

RESUMO

In addition to the presence of a suitable host and vector, the prevalence of haemosporidians is influenced by several important factors, including the environmental conditions of the habitat, which depend on broader geographic characteristics. The aim of this study is to perform a preliminarily assessment of the distribution of blood parasites in birds from the mountainous area of Zhongar Alatau NP and to find potential new sites for research on their ecology in Kazakhstan. The results of this research constitute the first report on the occurrence of blood parasites from this area. A total of 58 birds, from the order Passeriformes and one individual from the order Caprimulgiformes, were examined during the study. The overall prevalence of infections caused by haemosporidian parasites (Haemoproteus, Leucocytozoon) was 18.6%. Neither the genus Plasmodium nor the presence of trypanosomes and microfilariae was detected in the birds examined. Three birds (5.1% prevalence) were infected with parasites of the genus Haemoproteus, in all eleven positive birds the analyses showed the presence of parasites of the genus Leucocytozoon (18.6% prevalence). The presence of parasites genus Haemoproteus was detected only in birds that were also infected with Leucocytozoon parasites. More infections with parasites of the genus Leucocytozoon are predicted due to the higher altitude and ecological factors at the capture sites, which are more favourable for the development of vectors of this genus. The species Haemoproteus majoris was detected in the host Emberiza cioides and species Haemoproteus minutus in host Turdus merula. Other species of this genus in the hosts Cyanistes cyanus and Turdus atrogularis were not determined. The species Leucocytozoon fringilinarum was detected in the hosts Cyanistes cyanus and Parus major, Leucocytozoon dubreuili was detected in Turdus atrogularis and Turdus merula. In the other host species Aegithalos caudatus, Emberiza cioides and Periparus aterus, it was not possible to dermine the species of the genus Leucocytozoon.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Parques Recreativos , Cazaquistão/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves Canoras/parasitologia , Prevalência , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
10.
Parasitol Res ; 122(12): 3063-3075, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907627

RESUMO

Vector-transmitted haemosporidians are among the most common parasites in birds, but our knowledge of the inter-specific patterns of infection rates and the parasite community composition is far from complete because of the unequal distribution of the screening effort across bird families and genera. To assess infection rates and the diversity of haemosporidians from the genera Plasmodium, Haemoproteus, and Leucocytozoon in marsh terns, which represent poorly explored in this regard genus of the family gulls, terns, and skimmers (Laridae), we screened two species: the Whiskered Tern (Chlidonias hybrida) and the Black Tern (Chlidonias niger). We sampled these long-distance migratory birds on breeding grounds: the Whiskered Tern in south-central Poland and north-central Ukraine, and the Black Tern-in north-central Ukraine. We found that birds from both species were infected only sporadically, with prevalence at the population level not exceeding 3.4%. Only parasites from the genera Plasmodium and Leucocytozoon were detected. There was neither an inter-specific difference nor a difference between populations of the Whiskered Tern in infection rates. In total, we registered three lineages-one Plasmodium and two Leucocytozoon-that were previously recorded in other bird species, and two unidentified Plasmodium infections. One of the lineages (Leucocytozoon LARCAC02) represents a specialist parasite with the host range restricted to larids and geographic range restricted to Poland, and two others (Plasmodium SGS1 and Leucocytozoon CIAE02) represent generalist parasites with very broad host and geographic ranges. This study reinforces the existing evidence that terns host parasites from genera Haemoproteus, Plasmodium, and Leucocytozoon only sporadically.


Assuntos
Doenças das Aves , Charadriiformes , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Humanos , Animais , Parasitos/genética , Áreas Alagadas , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , DNA de Protozoário , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
11.
PLoS One ; 18(11): e0294066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019839

RESUMO

Leucocytozoon is a haemosporidian parasite known to cause leucocytozoonosis in domestic and wild birds in most parts of the world. It is an important pathogen, as some species can be pathogenic, especially in domestic birds. One of the factors affecting poultry health management worldwide is parasitism. However, the study of haemosporidian parasites in Ghana is still lacking. This study sought to assess the prevalence and diversity of Leucocytozoon parasites in domestic birds in Ghana. Blood samples were collected from domestic birds in Ghana's Bono and Eastern regions to screen for Leucocytozoon parasites. Thin blood smears were prepared for microscopy and DNA was extracted from whole blood kept in ethylenediaminetetraacetic acid (EDTA) tubes for PCR. Due to the large number of samples, real-time PCR was performed to amplify the conserved rDNA gene. Two different nested PCR protocols were performed on the positive samples obtained from real-time PCR results, to amplify a partial region of the mitochondrial cytochrome b gene and the amplicons were sequenced. Sequencing revealed six new lineages of Leucocytozoon sp. recovered in 976 individual domestic birds and these sequences were deposited in the National Center for Biotechnology Information (NCBI) GenBank. An overall Leucocytozoon prevalence of 11.6% was reported in all birds sampled. The most prevalent lineage LGHA146 (GenBank accession no. OM643346) (93.8%) was found infecting 3 bird species, Gallus gallus, Meleagris gallopavo, and Anas platyrhynchos. Phylogenetic analysis revealed that the new lineages (GenBank accession nos. OM643342, OM643343, OM643344, OM643345, OM643346, and OM643347), reported in this study were closely related to Leucocytozoon schoutedeni. We suggest that further studies be conducted to evaluate the effect of these parasite species on the general well-being of poultry in Ghana.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Animais , Filogenia , Prevalência , Gana/epidemiologia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Haemosporida/genética , Aves , Parasitos/genética , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
12.
Parasitol Res ; 122(12): 2967-2975, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787788

RESUMO

Haemosporidian parasites that infect birds (Apicomplexa: Haemosporida) are blood parasites that require an invertebrate host (vector) and a vertebrate host for their lifecycle and cause malaria-like diseases. This group of parasites has provided valuable insights into host specificity, virulence, and parasite dispersal. Additionally, they have played a significant role in reshaping our understanding of the evolutionary history of apicomplexans. In order to accurately identify species and to address phylogenetic questions such as the timing of the haemosporidian radiation, the use of a sufficiently large genetic data set is crucial. However, acquiring this genetic data poses significant challenges. In this research, a sensitive nested PCR assay was developed. This assay allows for the easy amplification of complete mitochondrial genomes of haemosporidian parasites in birds, even during the chronic stage of infection. The effectiveness of this new nested PCR assay was evaluated using blood and tissue samples of birds with verified single parasite infections from previous studies. The approach involves amplifying four overlapping fragments of the mitochondrial genome and requires DNA extracts from single-infected samples. This method successfully amplified the complete mitochondrial genomes of 24 distinct haemosporidian parasite lineages found in various bird species. This data is invaluable for conducting phylogenetic analyses and accurately defining species. Furthermore, this study proposes the existence of at least 15 new haemosporidian parasite species based on the genetic information obtained. Data regarding pGRW04, previously categorized as Plasmodium relictum like pSGS1 and pGRW11, indicates that the pGRW04 lineage is actually a separate, hidden Plasmodium species.


Assuntos
Doenças das Aves , Genoma Mitocondrial , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Animais Selvagens/genética , Parasitos/genética , Filogenia , Doenças das Aves/parasitologia , Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/parasitologia
13.
Microbiol Spectr ; 11(6): e0042923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800972

RESUMO

IMPORTANCE: Nowadays, the routine herd diagnosis is usually performed exclusively on bulls, as they remain permanently infected, and prevention and control of Tritrichomonas foetus transmission are based on identifying infected animals and culling practices. The existence of other forms of transmission and the possible role of pseudocysts or cyst-like structures as resistant forms requires rethinking the current management and control of this parasitic disease in the future in some livestock regions of the world.


Assuntos
Doenças dos Bovinos , Parasitos , Infecções Protozoárias em Animais , Tritrichomonas foetus , Animais , Bovinos , Masculino , Infecções Protozoárias em Animais/parasitologia , Água , Doenças dos Bovinos/prevenção & controle , Trato Gastrointestinal
14.
Parasitology ; 150(14): 1296-1306, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655743

RESUMO

The distribution of avian haemosporidians of the genus Leucocytozoon in the Neotropics remains poorly understood. Recent studies confirmed their presence in the region using molecular techniques alone, but evidence for gametocytes and data on putative competent hosts for Leucocytozoon are still lacking outside highland areas. We combined morphological and molecular data to characterize a new Leucocytozoon species infecting a non-migratory red-legged seriema (Cariama cristata), the first report of a competent host for Leucocytozoon in Brazil. Leucocytozoon cariamae n. sp. is distinguished from the Leucocytozoon fringillinarum group by its microgametocytes that are not strongly appressed to the host cell nucleus. The bird studied was coinfected with Haemoproteus pulcher, and we present a Bayesian phylogenetic analysis based on nearly complete mitochondrial genomes of these 2 parasites. Leucocytozoon cariamae n. sp. morphology is consistent with our phylogenetic analysis indicating that it does not share a recent common ancestor with the L. fringillinarum group. Haemoproteus pulcher and Haemoproteus catharti form a monophyletic group with Haemocystidium parasites of Reptilia, supporting the polyphyly of the genus Haemoproteus. We also discussed the hypothesis that H. pulcher and H. catharti may be avian Haemocystidium, highlighting the need to study non-passerine parasites to untangle the systematics of Haemosporida.


Assuntos
Doenças das Aves , Coinfecção , Genoma Mitocondrial , Haemosporida , Parasitos , Infecções Protozoárias em Animais , Animais , Filogenia , Brasil/epidemiologia , Teorema de Bayes , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves/parasitologia , Haemosporida/genética , Parasitos/genética , Aves
15.
Acta Parasitol ; 68(4): 746-753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589880

RESUMO

PURPOSE: Avian haemosporidians are widespread parasites, occurring in many bird families and causing pathologies ranging from rather benign infections to highly virulent diseases. The state of knowledge about lineage-specific intensities of haemosporidian infection (i.e., parasitaemia) is mainly based on infection experiments conducted under laboratory conditions. The levels and range of parasitaemia in natural host-parasite associations as well as their influencing factor remain largely unexplored. METHODS: Thus, we explored the parasitaemia of four songbird species (i.e., European Robins, Black and Common Redstarts and Whinchats) during migration by screening individuals upon landing on an insular passage site after extensive endurance flights to (1) describe their natural host-parasite associations, (2) quantify parasitaemia and (3) explore potential host- and parasite-related factors influencing parasitaemia. RESULTS: We found 68% of Whinchats to be infected with haemosporidians, which is more frequent than any other of the studied host species (30-34%). Furthermore, we confirmed that parasitaemia of Haemoproteus infections was higher than average Plasmodium infections. Median parasitaemia levels were rather low (parasite cells in 0.01% of hosts' red blood cells) and varied largely among the different parasite lineages. However, we found four individuals hosting infections with parasitaemia higher than typical chronic infections. CONCLUSIONS: Based on the known transmission areas of the respective lineages, we argue that these higher intensity infections might be relapses of consisting infections rather than acute phases of recent primary infections.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Humanos , Animais , Doenças das Aves/parasitologia , Haemosporida/genética , Plasmodium/genética , Infecções Protozoárias em Animais/parasitologia , Filogenia , Prevalência
16.
Malar J ; 22(1): 232, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563610

RESUMO

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Assuntos
Apicomplexa , Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Aves Canoras , Animais , Filogenia , RNA Ribossômico 18S/genética , Genes de RNAr , Doenças das Aves/parasitologia , Apicomplexa/genética , Plasmodium/genética , Mamíferos/genética , Infecções Protozoárias em Animais/parasitologia
17.
Int J Parasitol ; 53(14): 787-796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37467874

RESUMO

Avian blood parasites, from the genera Plasmodium, Haemoproteus and Leucocytozoon, are predicted to alter their range and prevalence as global temperatures change, and host and vector ranges shift. Understanding large-scale patterns in the prevalence and diversity of avian malaria and malaria-like parasites is important due to an incomplete understanding of their effects in the wild, where studies suggest even light parasitaemia can potentially cause rapid mortality, especially in naïve populations. We conducted phylogenetically controlled analyses to test for differences in prevalence and lineage diversity of haemoparasite infection (for Plasmodium, Haemoproteus and Leucocytozoon) in and between resident and migratory species along the African-Eurasian flyway. To test whether migratory strategy or range size drives differences in parasite prevalence and diversity between resident and migrant species, we included three categories of resident species: Eurasian only (n = 36 species), African only (n = 41), and species resident on both continents (n = 17), alongside intercontinental migrants (n = 64), using a subset of data from the MalAvi database comprising 27,861 individual birds. We found that species resident on both continents had a higher overall parasite diversity than all other categories. Eurasian residents had lower Plasmodium diversity than all other groups, and both migrants and species resident on both continents had higher Haemoproteus diversity than both African and Eurasian residents. Leucocytozoon diversity did not differ between groups. Prevalence patterns were less clear, with marked differences between genera. Both Plasmodium and Leucocytozoon prevalence was higher in species resident on both continents and African residents than in migrants and Eurasian residents. Haemoproteus prevalence was lower in Eurasian residents than species resident on both continents. Our findings contrast with previous findings in the North-South American flyway, where long-distance migrants had higher parasite diversity than residents and short-distance migrants, although we found contrasting patterns for parasite diversity to those seen for parasite prevalence. Crucially, our results suggest that geographic range may be more important than migratory strategy in driving parasite diversity within species along the African-Palaearctic flyway. Our findings differ between the three parasite genera included in our analysis, suggesting that vector ecology may be important in determining these large-scale patterns. Our results add to our understanding of global patterns in parasite diversity and abundance, and highlight the need to better understand the influence of vector ecology to understand the drivers of infection risk and predict responses to environmental change.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plasmodium/genética , Haemosporida/genética , Aves/parasitologia , Filogenia , Infecções Protozoárias em Animais/parasitologia
18.
J Avian Med Surg ; 37(1): 62-70, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37358204

RESUMO

A 1-year-old major Mitchell's cockatoo (Lophochroa leadbeateri) was presented for evaluation of weakness, diarrhea with undigested seeds in the droppings, and weight loss. Leukocytosis with severe heterophilia, monocytosis, and lymphocytosis was noted on the complete blood count. Altered plasma biochemical parameters included a slight increase in creatine kinase and mild hypoproteinemia. Two blood smears before and after 2 days of treatment revealed mild polychromasia and anisocytosis but no blood parasites. Radiographic and computed tomographic imaging of the cockatoo were helpful in identifying airsacculitis, pneumonia, and gastrointestinal motility disorders. The patient died 5 days after treatment for the presenting clinical problems. On the gross postmortem examination, dark red foci in the ventricular muscle layers and 1-3-mm white foci in the myocardium, opaque air sacs, and dark lungs were identified. Histopathologic examination of submitted tissue samples found severe granulomatous ventriculitis and myocarditis with intralesional Haemoproteus species megalomeronts. Qualitative polymerase chain reaction testing for the cytochrome b (cyt b) gene performed on pooled heart, liver, kidney, and intestinal tissues identified 99.5% homology to Haemoproteus minutus. This case report demonstrates the expansion of the geographic range of H minutus to France and potentially to Belgium, which may compromise breeding and conservation of Australian parrots living outdoors. Challenging diagnosis, rapid disease progression, and the absence of validated treatment protocols for psittacine patients suggest that the use of preventive measures to reduce the presence of insect vectors such as hippoboscid flies and biting midges (Culicoides) should be considered. Haemoproteus minutus should be considered and potentially screened by polymerase chain reaction testing on blood samples, especially in the case of highly susceptible avian species (eg, Australian parrots in Europe) that present with sudden weakness, heterophilic leukocytosis, and monocytosis associated with mild anemia.


Assuntos
Doenças das Aves , Ceratopogonidae , Cacatuas , Haemosporida , Papagaios , Infecções Protozoárias em Animais , Animais , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/parasitologia , Leucocitose/veterinária , Austrália , Haemosporida/genética , Ceratopogonidae/parasitologia , Doenças das Aves/diagnóstico , Doenças das Aves/parasitologia , Filogenia
19.
Int J Parasitol ; 53(10): 531-543, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263375

RESUMO

Avian haemosporidians are widespread parasites categorized into four families of the order Haemosporida (Apicomplexa). Species of the subgenus Parahaemoproteus (genus Haemoproteus) belong to the Haemoproteidae and are transmitted by Culicoides biting midges. Reports of death due to tissue damage during haemoproteosis in non-adapted birds have raised concerns about these pathogens, especially as their exo-erythrocytic development is known for only a few Haemoproteus spp. More research is needed to better understand the patterns of the parasites' development in tissues and their impact on avian hosts. Yellowhammers Emberiza citrinella (Emberizidae) and common house martins Delichon urbicum (Hirundinidae) were screened for Haemoproteus parasites by microscopic examination of blood films and PCR-based testing. Individuals with single infection were selected for histological investigations. H & E-stained sections were screened for detection and characterization of the exo-erythrocytic stages, while chromogenic in situ hybridization (CISH) and phylogenetic analysis were performed to confirm the Haemoproteus origin and their phylogenetic relationships. Haemoproteus dumbbellus n. sp. was discovered in Emberiza citrinella single-infected with the lineage hEMCIR01. Meronts of H. dumbbellus n. sp. developed in various organs of five of six tested individuals, a pattern which was reported in other Haemoproteus species clustering in the same clade, suggesting this could be a phylogenetic trait. By contrast, in Delichon urbicum infected with the Haemoproteus lineage hDELURB2, which was linked to the more distantly related parasite Haemoproteus hirundinis, only megalomeronts were found in the pectoral muscles of two of six infected individuals. All exo-erythrocytic stages were confirmed to be Haemoproteus parasites by CISH using a Haemoproteus genus-specific probe. While the development of meronts seems to be typical for species of the clade containing H. dumbbellus, further investigations and data from more species are needed to explore whether a phylogenetic pattern occurs in meront or megalomeront formation.


Assuntos
Doenças das Aves , Ceratopogonidae , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Humanos , Animais , Filogenia , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia , Passeriformes/parasitologia , Ceratopogonidae/parasitologia , Citocromos b/genética
20.
Avian Dis ; 67(1): 124-129, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37140122

RESUMO

Intestinal health plays a major role in profitable and efficient turkey production. Blackhead disease (histomoniasis) is caused by Histomonas meleagridis, an anaerobic protozoan parasite. Histomonas meleagridis disrupts intestinal integrity and may cause systemic infection. Some field outbreaks of blackhead disease are associated with low morbidity and mortality, while in some instances, it may cause severe morbidity and mortality. In the current study, a presumptive diagnosis of blackhead disease was made based on the characteristic gross lesions in the liver and ceca. The cecal culture, PCR, and sequencing confirmed the presence of H. meleagridis and Pentatrichomonas hominis. Pentatrichomonas hominis has been reported in enteritis cases of several other species, such as dogs, cats, and cattle. The impact of P. hominis on intestinal health of turkeys has not previously been studied, and to the best of our knowledge, this is the first case report of concurrent H. meleagridis and P. hominis infection in turkeys.


Reporte de caso- Infección simultánea de Histomonas meleagridis y Pentatrichomonas hominis en un brote de enfermedad de la cabeza negra en pavos. La salud intestinal juega un papel importante en la producción rentable y eficiente de pavos. La enfermedad de la cabeza negra (histomoniasis) es causada por Histomonas meleagridis, que es un parásito protozoario anaeróbico. Histomonas meleagridis altera la integridad intestinal y puede causar una infección sistémica. Algunos brotes de campo de la enfermedad de la cabeza negra están asociados con una baja morbilidad y mortalidad, mientras que en algunos casos puede causar una morbilidad y mortalidad severas. En el presente estudio, se realizó un diagnóstico presuntivo de la enfermedad de la cabeza negra con base a las lesiones macroscópicas características en el hígado y el ciego. El cultivo cecal, un método de PCR y secuenciación confirmaron la presencia de H. meleagridis y Pentatrichomonas hominis. Se ha reportado la presencia de Pentatrichomonas hominis en casos de enteritis de varias otras especies, como perros, gatos y ganado. El impacto de P. hominis en la salud intestinal de los pavos no se había estudiado previamente y según nuestro conocimiento, este es el primer reporte de un caso de infección simultánea por H. meleagridis y P. hominis en pavos.


Assuntos
Doenças dos Bovinos , Doenças do Cão , Doenças das Aves Domésticas , Infecções Protozoárias em Animais , Trichomonadida , Trichomonas , Animais , Bovinos , Cães , Perus/parasitologia , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/parasitologia , Surtos de Doenças/veterinária , Doenças dos Bovinos/epidemiologia , Doenças do Cão/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...